HyperAI
HyperAI超神经
首页
算力平台
文档
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Pubmed 60 20 20 Random
Node Classification On Pubmed 60 20 20 Random
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
GNNDLD
91.95±0.19
GNNDLD: Graph Neural Network with Directional Label Distribution
-
NHGCN
91.56 ± 0.50
Neighborhood Homophily-Guided Graph Convolutional Network
-
ACM-Snowball-3
91.44 ± 0.59
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
91.31 ± 0.6
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
90.96 ± 0.62
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
90.81 ± 0.52
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
90.74 ± 0.5
Revisiting Heterophily For Graph Neural Networks
ACM-GCN
90.66 ± 0.47
Revisiting Heterophily For Graph Neural Networks
Graph-MLP + SAF
90.64 ± 0.46%
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
ACMII-GCN++
90.63 ± 0.56
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
90.56 ± 0.39
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
90.46 ± 0.69
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
90.39 ± 0.33
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
90.18 ± 0.51
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
90.12 ± 0.4
Revisiting Heterophily For Graph Neural Networks
GCN+JK
90.09 ± 0.68
Revisiting Heterophily For Graph Neural Networks
Geom-GCN*
90.05
Geom-GCN: Geometric Graph Convolutional Networks
GCNII*
89.98 ± 0.52
Simple and Deep Graph Convolutional Networks
FAGCN
89.98 ± 0.54
Beyond Low-frequency Information in Graph Convolutional Networks
NFGNN
89.89±0.68
Node-oriented Spectral Filtering for Graph Neural Networks
0 of 37 row(s) selected.
Previous
Next
Node Classification On Pubmed 60 20 20 Random | SOTA | HyperAI超神经