Node Classification On Pubmed 60 20 20 Random

评估指标

1:1 Accuracy

评测结果

各个模型在此基准测试上的表现结果

Paper TitleRepository
GNNDLD91.95±0.19 GNNDLD: Graph Neural Network with Directional Label Distribution-
NHGCN91.56 ± 0.50Neighborhood Homophily-Guided Graph Convolutional Network-
ACM-Snowball-391.44 ± 0.59Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-391.31 ± 0.6Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+90.96 ± 0.62Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-290.81 ± 0.52Revisiting Heterophily For Graph Neural Networks
ACMII-GCN90.74 ± 0.5Revisiting Heterophily For Graph Neural Networks
ACM-GCN90.66 ± 0.47Revisiting Heterophily For Graph Neural Networks
Graph-MLP + SAF90.64 ± 0.46%The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
ACMII-GCN++90.63 ± 0.56Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-290.56 ± 0.39Revisiting Heterophily For Graph Neural Networks
ACM-GCN+90.46 ± 0.69Revisiting Heterophily For Graph Neural Networks
ACM-GCN++90.39 ± 0.33Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*90.18 ± 0.51Revisiting Heterophily For Graph Neural Networks
ACM-GCNII90.12 ± 0.4Revisiting Heterophily For Graph Neural Networks
GCN+JK90.09 ± 0.68Revisiting Heterophily For Graph Neural Networks
Geom-GCN*90.05Geom-GCN: Geometric Graph Convolutional Networks
GCNII*89.98 ± 0.52Simple and Deep Graph Convolutional Networks
FAGCN89.98 ± 0.54Beyond Low-frequency Information in Graph Convolutional Networks
NFGNN89.89±0.68Node-oriented Spectral Filtering for Graph Neural Networks
0 of 37 row(s) selected.
Node Classification On Pubmed 60 20 20 Random | SOTA | HyperAI超神经