HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Learning Human Activities and Object Affordances from RGB-D Videos

Hema Swetha Koppula; Rudhir Gupta; Ashutosh Saxena

Learning Human Activities and Object Affordances from RGB-D Videos

Abstract

Understanding human activities and object affordances are two very important skills, especially for personal robots which operate in human environments. In this work, we consider the problem of extracting a descriptive labeling of the sequence of sub-activities being performed by a human, and more importantly, of their interactions with the objects in the form of associated affordances. Given a RGB-D video, we jointly model the human activities and object affordances as a Markov random field where the nodes represent objects and sub-activities, and the edges represent the relationships between object affordances, their relations with sub-activities, and their evolution over time. We formulate the learning problem using a structural support vector machine (SSVM) approach, where labelings over various alternate temporal segmentations are considered as latent variables. We tested our method on a challenging dataset comprising 120 activity videos collected from 4 subjects, and obtained an accuracy of 79.4% for affordance, 63.4% for sub-activity and 75.0% for high-level activity labeling. We then demonstrate the use of such descriptive labeling in performing assistive tasks by a PR2 robot.

Benchmarks

BenchmarkMethodologyMetrics
skeleton-based-action-recognition-on-cad-120KGS
Accuracy: 86.0%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning Human Activities and Object Affordances from RGB-D Videos | Papers | HyperAI