HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Type-Driven Incremental Semantic Parsing with Polymorphism

Kai Zhao; Liang Huang

Type-Driven Incremental Semantic Parsing with Polymorphism

Abstract

Semantic parsing has made significant progress, but most current semantic parsers are extremely slow (CKY-based) and rather primitive in representation. We introduce three new techniques to tackle these problems. First, we design the first linear-time incremental shift-reduce-style semantic parsing algorithm which is more efficient than conventional cubic-time bottom-up semantic parsers. Second, our parser, being type-driven instead of syntax-driven, uses type-checking to decide the direction of reduction, which eliminates the need for a syntactic grammar such as CCG. Third, to fully exploit the power of type-driven semantic parsing beyond simple types (such as entities and truth values), we borrow from programming language theory the concepts of subtype polymorphism and parametric polymorphism to enrich the type system in order to better guide the parsing. Our system learns very accurate parses in GeoQuery, Jobs and Atis domains.

Benchmarks

BenchmarkMethodologyMetrics
semantic-parsing-on-atisZH15 (Zhao and Huang, 2015)
Accuracy: 84.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp