HyperAIHyperAI

Command Palette

Search for a command to run...

Evaluating Real-time Anomaly Detection Algorithms - the Numenta Anomaly Benchmark

Alexander Lavin Subutai Ahmad

Abstract

Much of the world's data is streaming, time-series data, where anomalies give significant information in critical situations; examples abound in domains such as finance, IT, security, medical, and energy. Yet detecting anomalies in streaming data is a difficult task, requiring detectors to process data in real-time, not batches, and learn while simultaneously making predictions. There are no benchmarks to adequately test and score the efficacy of real-time anomaly detectors. Here we propose the Numenta Anomaly Benchmark (NAB), which attempts to provide a controlled and repeatable environment of open-source tools to test and measure anomaly detection algorithms on streaming data. The perfect detector would detect all anomalies as soon as possible, trigger no false alarms, work with real-world time-series data across a variety of domains, and automatically adapt to changing statistics. Rewarding these characteristics is formalized in NAB, using a scoring algorithm designed for streaming data. NAB evaluates detectors on a benchmark dataset with labeled, real-world time-series data. We present these components, and give results and analyses for several open source, commercially-used algorithms. The goal for NAB is to provide a standard, open source framework with which the research community can compare and evaluate different algorithms for detecting anomalies in streaming data.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Evaluating Real-time Anomaly Detection Algorithms - the Numenta Anomaly Benchmark | Papers | HyperAI