HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry

Jiale Cao; Yanwei Pang; Xuelong Li

Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry

Abstract

The discrimination and simplicity of features are very important for effective and efficient pedestrian detection. However, most state-of-the-art methods are unable to achieve good tradeoff between accuracy and efficiency. Inspired by some simple inherent attributes of pedestrians (i.e., appearance constancy and shape symmetry), we propose two new types of non-neighboring features (NNF): side-inner difference features (SIDF) and symmetrical similarity features (SSF). SIDF can characterize the difference between the background and pedestrian and the difference between the pedestrian contour and its inner part. SSF can capture the symmetrical similarity of pedestrian shape. However, it's difficult for neighboring features to have such above characterization abilities. Finally, we propose to combine both non-neighboring and neighboring features for pedestrian detection. It's found that non-neighboring features can further decrease the average miss rate by 4.44%. Experimental results on INRIA and Caltech pedestrian datasets demonstrate the effectiveness and efficiency of the proposed method. Compared to the state-of-the-art methods without using CNN, our method achieves the best detection performance on Caltech, outperforming the second best method (i.e., Checkboards) by 1.63%.

Benchmarks

BenchmarkMethodologyMetrics
pedestrian-detection-on-caltechNNNF
Reasonable Miss Rate: 16.20

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry | Papers | HyperAI