HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis

Wenya Wang; Sinno Jialin Pan; Daniel Dahlmeier; Xiaokui Xiao

Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis

Abstract

In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge.

Benchmarks

BenchmarkMethodologyMetrics
aspect-based-sentiment-analysis-on-semeval-7RNCRF
Laptop (F1): 78.42
Restaurant (F1): 69.74

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp