HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Supervised Transformer Network for Efficient Face Detection

Dong Chen; Gang Hua; Fang Wen; Jian Sun

Supervised Transformer Network for Efficient Face Detection

Abstract

Large pose variations remain to be a challenge that confronts real-word face detection. We propose a new cascaded Convolutional Neural Network, dubbed the name Supervised Transformer Network, to address this challenge. The first stage is a multi-task Region Proposal Network (RPN), which simultaneously predicts candidate face regions along with associated facial landmarks. The candidate regions are then warped by mapping the detected facial landmarks to their canonical positions to better normalize the face patterns. The second stage, which is a RCNN, then verifies if the warped candidate regions are valid faces or not. We conduct end-to-end learning of the cascaded network, including optimizing the canonical positions of the facial landmarks. This supervised learning of the transformations automatically selects the best scale to differentiate face/non-face patterns. By combining feature maps from both stages of the network, we achieve state-of-the-art detection accuracies on several public benchmarks. For real-time performance, we run the cascaded network only on regions of interests produced from a boosting cascade face detector. Our detector runs at 30 FPS on a single CPU core for a VGA-resolution image.

Benchmarks

BenchmarkMethodologyMetrics
face-detection-on-annotated-faces-in-the-wildSTN
AP: 0.9835
face-detection-on-pascal-faceSTN
AP: 0.9410

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp