HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Learning Grimaces by Watching TV

Samuel Albanie; Andrea Vedaldi

Learning Grimaces by Watching TV

Abstract

Differently from computer vision systems which require explicit supervision, humans can learn facial expressions by observing people in their environment. In this paper, we look at how similar capabilities could be developed in machine vision. As a starting point, we consider the problem of relating facial expressions to objectively measurable events occurring in videos. In particular, we consider a gameshow in which contestants play to win significant sums of money. We extract events affecting the game and corresponding facial expressions objectively and automatically from the videos, obtaining large quantities of labelled data for our study. We also develop, using benchmarks such as FER and SFEW 2.0, state-of-the-art deep neural networks for facial expression recognition, showing that pre-training on face verification data can be highly beneficial for this task. Then, we extend these models to use facial expressions to predict events in videos and learn nameable expressions from them. The dataset and emotion recognition models are available at http://www.robots.ox.ac.uk/~vgg/data/facevalue

Benchmarks

BenchmarkMethodologyMetrics
facial-expression-recognition-on-staticVGG-VD-16
Accuracy: 54.82%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning Grimaces by Watching TV | Papers | HyperAI