Command Palette
Search for a command to run...
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Huifeng Guo; Ruiming Tang; Yunming Ye; Zhenguo Li; Xiuqiang He

Abstract
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low- or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide \& Deep model from Google, DeepFM has a shared input to its "wide" and "deep" parts, with no need of feature engineering besides raw features. Comprehensive experiments are conducted to demonstrate the effectiveness and efficiency of DeepFM over the existing models for CTR prediction, on both benchmark data and commercial data.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| click-through-rate-prediction-on-amazon | DeepFM | AUC: 0.8683 |
| click-through-rate-prediction-on-bing-news | DeepFM | AUC: 0.8376 Log Loss: 0.2671 |
| click-through-rate-prediction-on-company | DeepFM | AUC: 0.8715 Log Loss: 0.02618 |
| click-through-rate-prediction-on-criteo | DeepFM | AUC: 0.8007 Log Loss: 0.45083 |
| click-through-rate-prediction-on-dianping | DeepFM | AUC: 0.8481 Log Loss: 0.3333 |
| click-through-rate-prediction-on-kkbox | DeepFM | AUC: 0.8531 |
| click-through-rate-prediction-on-movielens | DeepFM | AUC: 0.7324 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.