HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Training Deep Networks without Learning Rates Through Coin Betting

Francesco Orabona; Tatiana Tommasi

Training Deep Networks without Learning Rates Through Coin Betting

Abstract

Deep learning methods achieve state-of-the-art performance in many application scenarios. Yet, these methods require a significant amount of hyperparameters tuning in order to achieve the best results. In particular, tuning the learning rates in the stochastic optimization process is still one of the main bottlenecks. In this paper, we propose a new stochastic gradient descent procedure for deep networks that does not require any learning rate setting. Contrary to previous methods, we do not adapt the learning rates nor we make use of the assumed curvature of the objective function. Instead, we reduce the optimization process to a game of betting on a coin and propose a learning-rate-free optimal algorithm for this scenario. Theoretical convergence is proven for convex and quasi-convex functions and empirical evidence shows the advantage of our algorithm over popular stochastic gradient algorithms.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
stochastic-optimization-on-mnistMLP
NLL: 0.0541

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Training Deep Networks without Learning Rates Through Coin Betting | Papers | HyperAI