Command Palette
Search for a command to run...
Michihiro Yasunaga; Rui Zhang; Kshitijh Meelu; Ayush Pareek; Krishnan Srinivasan; Dragomir Radev

Abstract
We propose a neural multi-document summarization (MDS) system that incorporates sentence relation graphs. We employ a Graph Convolutional Network (GCN) on the relation graphs, with sentence embeddings obtained from Recurrent Neural Networks as input node features. Through multiple layer-wise propagation, the GCN generates high-level hidden sentence features for salience estimation. We then use a greedy heuristic to extract salient sentences while avoiding redundancy. In our experiments on DUC 2004, we consider three types of sentence relation graphs and demonstrate the advantage of combining sentence relations in graphs with the representation power of deep neural networks. Our model improves upon traditional graph-based extractive approaches and the vanilla GRU sequence model with no graph, and it achieves competitive results against other state-of-the-art multi-document summarization systems.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| multi-document-summarization-on-duc-2004 | GCN: Personalized Discourse Graph | ROUGE-1: 38.23 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.