HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Neural Person Search Machines

Hao Liu; Jiashi Feng; Zequn Jie; Karlekar Jayashree; Bo Zhao; Meibin Qi; Jianguo Jiang; Shuicheng Yan

Neural Person Search Machines

Abstract

We investigate the problem of person search in the wild in this work. Instead of comparing the query against all candidate regions generated in a query-blind manner, we propose to recursively shrink the search area from the whole image till achieving precise localization of the target person, by fully exploiting information from the query and contextual cues in every recursive search step. We develop the Neural Person Search Machines (NPSM) to implement such recursive localization for person search. Benefiting from its neural search mechanism, NPSM is able to selectively shrink its focus from a loose region to a tighter one containing the target automatically. In this process, NPSM employs an internal primitive memory component to memorize the query representation which modulates the attention and augments its robustness to other distracting regions. Evaluations on two benchmark datasets, CUHK-SYSU Person Search dataset and PRW dataset, have demonstrated that our method can outperform current state-of-the-arts in both mAP and top-1 evaluation protocols.

Benchmarks

BenchmarkMethodologyMetrics
person-re-identification-on-cuhk-sysuNeural
MAP: 77.9
Rank-1: 81.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Neural Person Search Machines | Papers | HyperAI