HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Stochastic Variational Video Prediction

Mohammad Babaeizadeh; Chelsea Finn; Dumitru Erhan; Roy H. Campbell; Sergey Levine

Stochastic Variational Video Prediction

Abstract

Predicting the future in real-world settings, particularly from raw sensory observations such as images, is exceptionally challenging. Real-world events can be stochastic and unpredictable, and the high dimensionality and complexity of natural images requires the predictive model to build an intricate understanding of the natural world. Many existing methods tackle this problem by making simplifying assumptions about the environment. One common assumption is that the outcome is deterministic and there is only one plausible future. This can lead to low-quality predictions in real-world settings with stochastic dynamics. In this paper, we develop a stochastic variational video prediction (SV2P) method that predicts a different possible future for each sample of its latent variables. To the best of our knowledge, our model is the first to provide effective stochastic multi-frame prediction for real-world video. We demonstrate the capability of the proposed method in predicting detailed future frames of videos on multiple real-world datasets, both action-free and action-conditioned. We find that our proposed method produces substantially improved video predictions when compared to the same model without stochasticity, and to other stochastic video prediction methods. Our SV2P implementation will be open sourced upon publication.

Benchmarks

BenchmarkMethodologyMetrics
video-generation-on-bair-robot-pushingSV2P (from FVD)
Cond: 2
FVD score: 262.5
Pred: 14
Train: 14
video-generation-on-bair-robot-pushingSV2P (from SRVP)
Cond: 2
FVD score: 965±17
LPIPS: 0.0912±0.0053
PSNR: 20.39±0.27
Pred: 28
SSIM: 0.8169±0.0086
Train: 12
video-prediction-on-kthSV2P time-invariant (from Grid-keypoints)
Cond: 10
FVD: 253.5
LPIPS: 0.260
PSNR: 25.70
Params (M): 8.3
Pred: 40
SSIM: 0.772
Train: 10
video-prediction-on-kthSV2P time-invariant (from Grid-keypoints)
Cond: 10
FVD: 209.5
LPIPS: 0.232
PSNR: 25.87
Params (M): 8.3
Pred: 40
SSIM: 0.782
Train: 10
video-prediction-on-kthSV2P (from SRVP)
Cond: 10
FVD: 636 ± 1
LPIPS: 0.2049±0.0053
PSNR: 28.19±0.31
Pred: 30
SSIM: 0.838
Train: 10

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp