HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Style Transfer in Text: Exploration and Evaluation

Zhenxin Fu; Xiaoye Tan; Nanyun Peng; Dongyan Zhao; Rui Yan

Style Transfer in Text: Exploration and Evaluation

Abstract

Style transfer is an important problem in natural language processing (NLP). However, the progress in language style transfer is lagged behind other domains, such as computer vision, mainly because of the lack of parallel data and principle evaluation metrics. In this paper, we propose to learn style transfer with non-parallel data. We explore two models to achieve this goal, and the key idea behind the proposed models is to learn separate content representations and style representations using adversarial networks. We also propose novel evaluation metrics which measure two aspects of style transfer: transfer strength and content preservation. We access our models and the evaluation metrics on two tasks: paper-news title transfer, and positive-negative review transfer. Results show that the proposed content preservation metric is highly correlate to human judgments, and the proposed models are able to generate sentences with higher style transfer strength and similar content preservation score comparing to auto-encoder.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
text-style-transfer-on-yelp-review-datasetMultiDecoder
G-Score (BLEU, Accuracy): 45.02
text-style-transfer-on-yelp-review-datasetStyleEmbedding
G-Score (BLEU, Accuracy): 31.31

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Style Transfer in Text: Exploration and Evaluation | Papers | HyperAI