HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation

Huaizu Jiang; Deqing Sun; Varun Jampani; Ming-Hsuan Yang; Erik Learned-Miller; Jan Kautz

Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation

Abstract

Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture. These flows are then linearly combined at each time step to approximate the intermediate bi-directional optical flows. These approximate flows, however, only work well in locally smooth regions and produce artifacts around motion boundaries. To address this shortcoming, we employ another U-Net to refine the approximated flow and also predict soft visibility maps. Finally, the two input images are warped and linearly fused to form each intermediate frame. By applying the visibility maps to the warped images before fusion, we exclude the contribution of occluded pixels to the interpolated intermediate frame to avoid artifacts. Since none of our learned network parameters are time-dependent, our approach is able to produce as many intermediate frames as needed. We use 1,132 video clips with 240-fps, containing 300K individual video frames, to train our network. Experimental results on several datasets, predicting different numbers of interpolated frames, demonstrate that our approach performs consistently better than existing methods.

Code Repositories

susomena/DeepSlowMotion
tf
Mentioned in GitHub
rmalav15/Super-SloMo
tf
Mentioned in GitHub
NVIDIA/unsupervised-video-interpolation
pytorch
Mentioned in GitHub
avinashpaliwal/Super-SloMo
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
video-frame-interpolation-on-msu-video-frameSuper-SloMo
FPS: 3.1
LPIPS: 0.068
MS-SSIM: 0.924
PSNR: 26.69
SSIM: 0.904
Subjective score: 1.11
VMAF: 61.35

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation | Papers | HyperAI