HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Achieving Human Parity on Automatic Chinese to English News Translation

Hany Hassan; Anthony Aue; Chang Chen; Vishal Chowdhary; Jonathan Clark; Christian Federmann; Xuedong Huang; Marcin Junczys-Dowmunt; William Lewis; Mu Li; Shujie Liu; Tie-Yan Liu; Renqian Luo; Arul Menezes; Tao Qin; Frank Seide; Xu Tan; Fei Tian; Lijun Wu; Shuangzhi Wu; Yingce Xia; Dongdong Zhang; Zhirui Zhang; Ming Zhou

Achieving Human Parity on Automatic Chinese to English News Translation

Abstract

Machine translation has made rapid advances in recent years. Millions of people are using it today in online translation systems and mobile applications in order to communicate across language barriers. The question naturally arises whether such systems can approach or achieve parity with human translations. In this paper, we first address the problem of how to define and accurately measure human parity in translation. We then describe Microsoft's machine translation system and measure the quality of its translations on the widely used WMT 2017 news translation task from Chinese to English. We find that our latest neural machine translation system has reached a new state-of-the-art, and that the translation quality is at human parity when compared to professional human translations. We also find that it significantly exceeds the quality of crowd-sourced non-professional translations.

Code Repositories

sanxing-chen/NMT2017-ZH-EN
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
machine-translation-on-wmt-2017-english-1Hassan et al. (2018)
BLEU score: 24.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp