HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Simple Baselines for Human Pose Estimation and Tracking

Bin Xiao; Haiping Wu; Yichen Wei

Simple Baselines for Human Pose Estimation and Tracking

Abstract

There has been significant progress on pose estimation and increasing interests on pose tracking in recent years. At the same time, the overall algorithm and system complexity increases as well, making the algorithm analysis and comparison more difficult. This work provides simple and effective baseline methods. They are helpful for inspiring and evaluating new ideas for the field. State-of-the-art results are achieved on challenging benchmarks. The code will be available at https://github.com/leoxiaobin/pose.pytorch.

Benchmarks

BenchmarkMethodologyMetrics
2d-human-pose-estimation-on-jhmdb-2d-posesSimplePose
PCK: 94.4
2d-human-pose-estimation-on-ochumanResNet-152
Test AP: 33.3
Validation AP: 41.0
2d-human-pose-estimation-on-ochumanResNet-50
Test AP: 30.4
Validation AP: 37.8
keypoint-detection-on-cocoResNet-50
Validation AP: 72.2
keypoint-detection-on-coco-test-challengeSimple Base+*
AP: 74.5
AP50: 90.9
AP75: 80.8
APL: 87.5
AR: 80.5
AR50: 95.1
AR75: 86.3
ARL: 82.9
ARM: 75.3
keypoint-detection-on-coco-test-devSimple Base
AP50: 91.9
AP75: 81.1
APL: 80.0
APM: 70.3
AR: 79.0
keypoint-detection-on-coco-test-devSimple Base+*
AP50: 92.4
AP75: 84.0
APL: 82.7
APM: 73.0
AR: 81.5
AR50: 95.8
AR75: 88.2
ARL: 87.2
ARM: 77.4
keypoint-detection-on-ochumanResNet-50
Test AP: 29.5
Validation AP: 32.1
keypoint-detection-on-ochumanResNet-152
Test AP: 33.3
Validation AP: 41.0
multi-person-pose-estimation-on-crowdposeSimple baseline
AP Easy: 71.4
AP Hard: 51.2
AP Medium: 61.2
mAP @0.5:0.95: 60.8
multi-person-pose-estimation-on-ochumanSimplePose
AP50: 37.4
AP75: 26.8
Validation AP: 24.1
pose-estimation-on-aicSimpleBaseline (ResNet-152)
AP: 29.9
AP50: 73.8
AP75: 18.3
AR: 34.3
AR50: 76.9
pose-estimation-on-aicSimpleBaseline (ResNet-101)
AP: 29.4
AP50: 73.6
AP75: 17.4
AR: 33.7
AR50: 76.3
pose-estimation-on-aicSimpleBaseline (ResNet-50)
AP: 28.0
AP50: 71.6
AP75: 15.8
AR: 32.1
AR50: 74.1
pose-estimation-on-coco-test-devFlow-based (ResNet-152)
AP: 73.7
AP50: 91.9
AP75: 81.1
APL: 80
APM: 70.3
AR: 79
pose-estimation-on-coco-val2017SimpleBaseLine (256x192)
AP: 70.4
AP50: -
AP75: -
AR: -
pose-estimation-on-ochumanResNet-152
Test AP: 33.3
Validation AP: 41.0
pose-estimation-on-ochumanResNet-50
Test AP: 29.5
Validation AP: 32.1
pose-tracking-on-posetrack2017MSRA (FlowTrack)
MOTA: 57.81
mAP: 74.57
pose-tracking-on-posetrack2018MSRA
MOTA: 61.37
mAP: 74.03

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Simple Baselines for Human Pose Estimation and Tracking | Papers | HyperAI