HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

ECG Heartbeat Classification: A Deep Transferable Representation

Mohammad Kachuee; Shayan Fazeli; Majid Sarrafzadeh

ECG Heartbeat Classification: A Deep Transferable Representation

Abstract

Electrocardiogram (ECG) can be reliably used as a measure to monitor the functionality of the cardiovascular system. Recently, there has been a great attention towards accurate categorization of heartbeats. While there are many commonalities between different ECG conditions, the focus of most studies has been classifying a set of conditions on a dataset annotated for that task rather than learning and employing a transferable knowledge between different tasks. In this paper, we propose a method based on deep convolutional neural networks for the classification of heartbeats which is able to accurately classify five different arrhythmias in accordance with the AAMI EC57 standard. Furthermore, we suggest a method for transferring the knowledge acquired on this task to the myocardial infarction (MI) classification task. We evaluated the proposed method on PhysionNet's MIT-BIH and PTB Diagnostics datasets. According to the results, the suggested method is able to make predictions with the average accuracies of 93.4% and 95.9% on arrhythmia classification and MI classification, respectively.

Benchmarks

BenchmarkMethodologyMetrics
arrhythmia-detection-on-mit-bih-arDeep residual CNN
Accuracy (Inter-Patient): 93.4%
myocardial-infarction-detection-on-ptbDeep residual CNN
Accuracy: 95.9%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
ECG Heartbeat Classification: A Deep Transferable Representation | Papers | HyperAI