HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Every Node Counts: Self-Ensembling Graph Convolutional Networks for Semi-Supervised Learning

Yawei Luo; Tao Guan; Junqing Yu; Ping Liu; Yi Yang

Every Node Counts: Self-Ensembling Graph Convolutional Networks for Semi-Supervised Learning

Abstract

Graph convolutional network (GCN) provides a powerful means for graph-based semi-supervised tasks. However, as a localized first-order approximation of spectral graph convolution, the classic GCN can not take full advantage of unlabeled data, especially when the unlabeled node is far from labeled ones. To capitalize on the information from unlabeled nodes to boost the training for GCN, we propose a novel framework named Self-Ensembling GCN (SEGCN), which marries GCN with Mean Teacher - another powerful model in semi-supervised learning. SEGCN contains a student model and a teacher model. As a student, it not only learns to correctly classify the labeled nodes, but also tries to be consistent with the teacher on unlabeled nodes in more challenging situations, such as a high dropout rate and graph collapse. As a teacher, it averages the student model weights and generates more accurate predictions to lead the student. In such a mutual-promoting process, both labeled and unlabeled samples can be fully utilized for backpropagating effective gradients to train GCN. In three article classification tasks, i.e. Citeseer, Cora and Pubmed, we validate that the proposed method matches the state of the arts in the classification accuracy.

Code Repositories

RoyalVane/SEGCN
Official
pytorch

Benchmarks

BenchmarkMethodologyMetrics
node-classification-on-citeseer-with-publicSEGCN
Accuracy: 73.4 ± 0.7
node-classification-on-coraSEGCN
Accuracy: 83.5% ± 0.4%
node-classification-on-cora-fixed-20-node-perSEGCN
Accuracy: 83.5 ± 0.4
node-classification-on-pubmed-with-publicSEGCN
Accuracy: 78.9 ± 0.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Every Node Counts: Self-Ensembling Graph Convolutional Networks for Semi-Supervised Learning | Papers | HyperAI