HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Weakly Supervised Object Detection in Artworks

Nicolas Gonthier; Yann Gousseau; Said Ladjal; Olivier Bonfait

Weakly Supervised Object Detection in Artworks

Abstract

We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experiments dealing with the automatic (and in our case weakly supervised) detection of iconographic elements in paintings. We believe that such a method is of great benefit for helping art historians to explore large digital databases.

Code Repositories

ngonthier/Mi_max
tf
Mentioned in GitHub
nicaogr/Mi_max
Official
tf
Mentioned in GitHub

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Weakly Supervised Object Detection in Artworks | Papers | HyperAI