HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Joint Monocular 3D Vehicle Detection and Tracking

Hou-Ning Hu; Qi-Zhi Cai; Dequan Wang; Ji Lin; Min Sun; Philipp Krähenbühl; Trevor Darrell; Fisher Yu

Joint Monocular 3D Vehicle Detection and Tracking

Abstract

Vehicle 3D extents and trajectories are critical cues for predicting the future location of vehicles and planning future agent ego-motion based on those predictions. In this paper, we propose a novel online framework for 3D vehicle detection and tracking from monocular videos. The framework can not only associate detections of vehicles in motion over time, but also estimate their complete 3D bounding box information from a sequence of 2D images captured on a moving platform. Our method leverages 3D box depth-ordering matching for robust instance association and utilizes 3D trajectory prediction for re-identification of occluded vehicles. We also design a motion learning module based on an LSTM for more accurate long-term motion extrapolation. Our experiments on simulation, KITTI, and Argoverse datasets show that our 3D tracking pipeline offers robust data association and tracking. On Argoverse, our image-based method is significantly better for tracking 3D vehicles within 30 meters than the LiDAR-centric baseline methods.

Code Repositories

ucbdrive/3d-vehicle-tracking
pytorch
Mentioned in GitHub

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Joint Monocular 3D Vehicle Detection and Tracking | Papers | HyperAI