HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Evaluating Bayesian Deep Learning Methods for Semantic Segmentation

Jishnu Mukhoti; Yarin Gal

Evaluating Bayesian Deep Learning Methods for Semantic Segmentation

Abstract

Deep learning has been revolutionary for computer vision and semantic segmentation in particular, with Bayesian Deep Learning (BDL) used to obtain uncertainty maps from deep models when predicting semantic classes. This information is critical when using semantic segmentation for autonomous driving for example. Standard semantic segmentation systems have well-established evaluation metrics. However, with BDL's rising popularity in computer vision we require new metrics to evaluate whether a BDL method produces better uncertainty estimates than another method. In this work we propose three such metrics to evaluate BDL models designed specifically for the task of semantic segmentation. We modify DeepLab-v3+, one of the state-of-the-art deep neural networks, and create its Bayesian counterpart using MC dropout and Concrete dropout as inference techniques. We then compare and test these two inference techniques on the well-known Cityscapes dataset using our suggested metrics. Our results provide new benchmarks for researchers to compare and evaluate their improved uncertainty quantification in pursuit of safer semantic segmentation.

Code Repositories

IntelLabs/AVUC
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
anomaly-detection-on-fishyscapes-1Bayesian DeepLab
AP: 48.7
FPR95: 15.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation | Papers | HyperAI