Command Palette
Search for a command to run...
Yukai Liu; Rose Yu; Stephan Zheng; Eric Zhan; Yisong Yue

Abstract
Missing value imputation is a fundamental problem in spatiotemporal modeling, from motion tracking to the dynamics of physical systems. Deep autoregressive models suffer from error propagation which becomes catastrophic for imputing long-range sequences. In this paper, we take a non-autoregressive approach and propose a novel deep generative model: Non-AutOregressive Multiresolution Imputation (NAOMI) to impute long-range sequences given arbitrary missing patterns. NAOMI exploits the multiresolution structure of spatiotemporal data and decodes recursively from coarse to fine-grained resolutions using a divide-and-conquer strategy. We further enhance our model with adversarial training. When evaluated extensively on benchmark datasets from systems of both deterministic and stochastic dynamics. NAOMI demonstrates significant improvement in imputation accuracy (reducing average prediction error by 60% compared to autoregressive counterparts) and generalization for long range sequences.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| multivariate-time-series-imputation-on-2 | NAOMI | OOB Rate (10^−3) : 1.733 Path Difference: 0.581 Path Length: 0.573 Player Distance : 0.423 Step Change (10^−3): 2.565 |
| multivariate-time-series-imputation-on-pems | NAOMI | L2 Loss (10^-4): 3.54 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.