HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Adaptive Posterior Learning: few-shot learning with a surprise-based memory module

Tiago Ramalho; Marta Garnelo

Adaptive Posterior Learning: few-shot learning with a surprise-based memory module

Abstract

The ability to generalize quickly from few observations is crucial for intelligent systems. In this paper we introduce APL, an algorithm that approximates probability distributions by remembering the most surprising observations it has encountered. These past observations are recalled from an external memory module and processed by a decoder network that can combine information from different memory slots to generalize beyond direct recall. We show this algorithm can perform as well as state of the art baselines on few-shot classification benchmarks with a smaller memory footprint. In addition, its memory compression allows it to scale to thousands of unknown labels. Finally, we introduce a meta-learning reasoning task which is more challenging than direct classification. In this setting, APL is able to generalize with fewer than one example per class via deductive reasoning.

Code Repositories

cogentlabs/apl
Official
pytorch

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module | Papers | HyperAI