Command Palette
Search for a command to run...
Luan Tran; Feng Liu; Xiaoming Liu

Abstract
Embedding 3D morphable basis functions into deep neural networks opens great potential for models with better representation power. However, to faithfully learn those models from an image collection, it requires strong regularization to overcome ambiguities involved in the learning process. This critically prevents us from learning high fidelity face models which are needed to represent face images in high level of details. To address this problem, this paper presents a novel approach to learn additional proxies as means to side-step strong regularizations, as well as, leverages to promote detailed shape/albedo. To ease the learning, we also propose to use a dual-pathway network, a carefully-designed architecture that brings a balance between global and local-based models. By improving the nonlinear 3D morphable model in both learning objective and network architecture, we present a model which is superior in capturing higher level of details than the linear or its precedent nonlinear counterparts. As a result, our model achieves state-of-the-art performance on 3D face reconstruction by solely optimizing latent representations.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| 3d-face-reconstruction-on-realy | N-3DMM | @cheek: 1.918 (±0.801) @forehead: 4.582 (±1.488) @mouth: 2.375 (±0.599) @nose: 2.936 (±0.810) all: 2.953 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.