HyperAIHyperAI

Command Palette

Search for a command to run...

Butterfly: One-step Approach towards Wildly Unsupervised Domain Adaptation

Feng Liu Jie Lu Bo Han Gang Niu Guangquan Zhang Masashi Sugiyama

Abstract

In unsupervised domain adaptation (UDA), classifiers for the target domain (TD) are trained with clean labeled data from the source domain (SD) and unlabeled data from TD. However, in the wild, it is difficult to acquire a large amount of perfectly clean labeled data in SD given limited budget. Hence, we consider a new, more realistic and more challenging problem setting, where classifiers have to be trained with noisy labeled data from SD and unlabeled data from TD -- we name it wildly UDA (WUDA). We show that WUDA ruins all UDA methods if taking no care of label noise in SD, and to this end, we propose a Butterfly framework, a powerful and efficient solution to WUDA. Butterfly maintains four deep networks simultaneously, where two take care of all adaptations (i.e., noisy-to-clean, labeled-to-unlabeled, and SD-to-TD-distributional) and then the other two can focus on classification in TD. As a consequence, Butterfly possesses all the conceptually necessary components for solving WUDA. Experiments demonstrate that, under WUDA, Butterfly significantly outperforms existing baseline methods.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Butterfly: One-step Approach towards Wildly Unsupervised Domain Adaptation | Papers | HyperAI