HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Region-specific Diffeomorphic Metric Mapping

Zhengyang Shen; François-Xavier Vialard; Marc Niethammer

Region-specific Diffeomorphic Metric Mapping

Abstract

We introduce a region-specific diffeomorphic metric mapping (RDMM) registration approach. RDMM is non-parametric, estimating spatio-temporal velocity fields which parameterize the sought-for spatial transformation. Regularization of these velocity fields is necessary. However, while existing non-parametric registration approaches, e.g., the large displacement diffeomorphic metric mapping (LDDMM) model, use a fixed spatially-invariant regularization our model advects a spatially-varying regularizer with the estimated velocity field, thereby naturally attaching a spatio-temporal regularizer to deforming objects. We explore a family of RDMM registration approaches: 1) a registration model where regions with separate regularizations are pre-defined (e.g., in an atlas space), 2) a registration model where a general spatially-varying regularizer is estimated, and 3) a registration model where the spatially-varying regularizer is obtained via an end-to-end trained deep learning (DL) model. We provide a variational derivation of RDMM, show that the model can assure diffeomorphic transformations in the continuum, and that LDDMM is a particular instance of RDMM. To evaluate RDMM performance we experiment 1) on synthetic 2D data and 2) on two 3D datasets: knee magnetic resonance images (MRIs) of the Osteoarthritis Initiative (OAI) and computed tomography images (CT) of the lung. Results show that our framework achieves state-of-the-art image registration performance, while providing additional information via a learned spatio-temoporal regularizer. Further, our deep learning approach allows for very fast RDMM and LDDMM estimations. Our code will be open-sourced. Code is available at https://github.com/uncbiag/registration.

Code Repositories

uncbiag/registration
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
image-registration-on-osteoarthritisRegion-specific Diffeomorphic Metric Mapping
Dice: 68.18

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Region-specific Diffeomorphic Metric Mapping | Papers | HyperAI