HyperAIHyperAI

Command Palette

Search for a command to run...

Scaling Autoregressive Video Models

Dirk Weissenborn* Google Research diwe@google.com Oscar Täckström*† Sana Labs oscar@sanalabs.com Jakob Uszkoreit Google Research usz@google.com

Abstract

Due to the statistical complexity of video, the high degree of inherent stochasticity, and the sheer amount of data, generating natural video remains a challenging task. State-of-the-art video generation models often attempt to address these issues by combining sometimes complex, usually video-specific neural network architectures, latent variable models, adversarial training and a range of other methods. Despite their often high complexity, these approaches still fall short of generating high quality video continuations outside of narrow domains and often struggle with fidelity. In contrast, we show that conceptually simple autoregressive video generation models based on a three-dimensional self-attention mechanism achieve competitive results across multiple metrics on popular benchmark datasets, for which they produce continuations of high fidelity and realism. We also present results from training our models on Kinetics, a large scale action recognition dataset comprised of YouTube videos exhibiting phenomena such as camera movement, complex object interactions and diverse human movement. While modeling these phenomena consistently remains elusive, we hope that our results, which include occasional realistic continuations encourage further research on comparatively complex, large scale datasets such as Kinetics.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Scaling Autoregressive Video Models | Papers | HyperAI