HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances

Csaba Toth; Harald Oberhauser

Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances

Abstract

We develop a Bayesian approach to learning from sequential data by using Gaussian processes (GPs) with so-called signature kernels as covariance functions. This allows to make sequences of different length comparable and to rely on strong theoretical results from stochastic analysis. Signatures capture sequential structure with tensors that can scale unfavourably in sequence length and state space dimension. To deal with this, we introduce a sparse variational approach with inducing tensors. We then combine the resulting GP with LSTMs and GRUs to build larger models that leverage the strengths of each of these approaches and benchmark the resulting GPs on multivariate time series (TS) classification datasets. Code available at https://github.com/tgcsaba/GPSig.

Code Repositories

tgcsaba/GPSig
Official
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
time-series-classification-onGP-Sig-LSTM
Accuracy: 0.991
NLL: 0.031
time-series-classification-onGP-LSTM
Accuracy: 0.233
NLL: 2.506
time-series-classification-onGP-KConv1D
Accuracy: 0.941
NLL: 0.409
time-series-classification-onGP-Sig
Accuracy: 0.979
NLL: 0.108
time-series-classification-onGP-Sig-GRU
Accuracy: 0.925
NLL: 0.258
time-series-classification-onGP-GRU
Accuracy: 0.114
NLL: 3.523
time-series-classification-on-arabicdigitsGP-KConv1D
Accuracy: 0.984
NLL: 0.050
time-series-classification-on-arabicdigitsGP-LSTM
Accuracy: 0.985
NLL: 0.082
time-series-classification-on-arabicdigitsGP-Sig-GRU
Accuracy: 0.994
NLL: 0.023
time-series-classification-on-arabicdigitsGP-GRU
Accuracy: 0.986
NLL: 0.066
time-series-classification-on-arabicdigitsGP-Sig
Accuracy: 0.979
NLL: 0.071
time-series-classification-on-arabicdigitsGP-Sig-LSTM
Accuracy: 0.992
NLL: 0.047
time-series-classification-on-auslanGP-Sig-GRU
Accuracy: 0.978
NLL: 0.123
time-series-classification-on-auslanGP-KConv1D
Accuracy: 0.784
NLL: 1.900
time-series-classification-on-auslanGP-Sig
Accuracy: 0.925
NLL: 0.550
time-series-classification-on-auslanGP-LSTM
Accuracy: 0.880
NLL: 0.650
time-series-classification-on-auslanGP-Sig-LSTM
Accuracy: 0.983
NLL: 0.106
time-series-classification-on-auslanGP-GRU
Accuracy: 0.949
NLL: 0.248
time-series-classification-on-cmusubject16GP-Sig-LSTM
Accuracy: 1.000
NLL: 0.088
time-series-classification-on-cmusubject16GP-GRU
Accuracy: 0.993
NLL: 0.089
time-series-classification-on-cmusubject16GP-Sig
Accuracy: 0.979
NLL: 0.089
time-series-classification-on-cmusubject16GP-Sig-GRU
Accuracy: 1.000
NLL: 0.040
time-series-classification-on-cmusubject16GP-LSTM
Accuracy: 0.924
NLL: 0.270
time-series-classification-on-cmusubject16GP-KConv1D
Accuracy: 0.897
NLL: 0.255
time-series-classification-on-digitshapesGP-Sig-LSTM
Accuracy: 1.000
NLL: 0.008
time-series-classification-on-digitshapesGP-Sig-GRU
Accuracy: 1.000
NLL: 0.035
time-series-classification-on-digitshapesGP-KConv1D
Accuracy: 1.000
NLL: 0.035
time-series-classification-on-digitshapesGP-Sig
Accuracy: 1.000
NLL: 0.021
time-series-classification-on-digitshapesGP-LSTM
Accuracy: 1.000
NLL: 0.013
time-series-classification-on-digitshapesGP-GRU
Accuracy: 0.812
NLL: 0.727
time-series-classification-on-ecgGP-KConv1D
Accuracy: 0.760
NLL: 0.543
time-series-classification-on-ecgGP-LSTM
Accuracy: 0.782
NLL: 0.496
time-series-classification-on-ecgGP-GRU
Accuracy: 0.734
NLL: 0.601
time-series-classification-on-ecgGP-Sig-LSTM
Accuracy: 0.816
NLL: 0.402
time-series-classification-on-ecgGP-Sig-GRU
Accuracy: 0.832
NLL: 0.431
time-series-classification-on-ecgGP-Sig
Accuracy: 0.848
NLL: 0.356
time-series-classification-on-japanesevowelsGP-Sig-LSTM
Accuracy: 0.981
NLL: 0.080
time-series-classification-on-japanesevowelsGP-Sig
Accuracy: 0.982
NLL: 0.069
time-series-classification-on-japanesevowelsGP-KConv1D
Accuracy: 0.986
NLL: 0.067
time-series-classification-on-japanesevowelsGP-LSTM
Accuracy: 0.982
NLL: 0.061
time-series-classification-on-japanesevowelsGP-Sig-GRU
Accuracy: 0.985
NLL: 0.053
time-series-classification-on-japanesevowelsGP-GRU
Accuracy: 0.986
NLL: 0.052
time-series-classification-on-kickvspunchGP-Sig-GRU
Accuracy: 0.820
NLL: 0.493
time-series-classification-on-kickvspunchGP-LSTM
Accuracy: 0.620
NLL: 0.696
time-series-classification-on-kickvspunchGP-KConv1D
Accuracy: 0.700
NLL: 0.662
time-series-classification-on-kickvspunchGP-GRU
Accuracy: 0.600
NLL: 0.674
time-series-classification-on-kickvspunchGP-Sig
Accuracy: 0.900
NLL: 0.224
time-series-classification-on-kickvspunchGP-Sig-LSTM
Accuracy: 0.900
NLL: 0.301
time-series-classification-on-librasGP-GRU
Accuracy: 0.742
NLL: 1.110
time-series-classification-on-librasGP-Sig-LSTM
Accuracy: 0.921
NLL: 0.320
time-series-classification-on-librasGP-Sig
Accuracy: 0.923
NLL: 0.259
time-series-classification-on-librasGP-KConv1D
Accuracy: 0.698
NLL: 1.608
time-series-classification-on-librasGP-LSTM
Accuracy: 0.776
NLL: 0.911
time-series-classification-on-librasGP-Sig-GRU
Accuracy: 0.899
NLL: 0.346
time-series-classification-on-netflowGP-LSTM
Accuracy: 0.928
NLL: 0.251
time-series-classification-on-netflowGP-Sig
Accuracy: 0.937
NLL: 0.189
time-series-classification-on-netflowGP-KConv1D
Accuracy: 0.945
NLL: 0.168
time-series-classification-on-netflowGP-GRU
Accuracy: 0.926
NLL: 0.194
time-series-classification-on-netflowGP-Sig-GRU
Accuracy: 0.921
NLL: 0.259
time-series-classification-on-netflowGP-Sig-LSTM
Accuracy: 0.931
NLL: 0.218
time-series-classification-on-pemsGP-Sig
Accuracy: 0.820
NLL: 0.520
time-series-classification-on-pemsGP-GRU
Accuracy: 0.769
NLL: 0.784
time-series-classification-on-pemsGP-Sig-GRU
Accuracy: 0.775
NLL: 1.100
time-series-classification-on-pemsGP-Sig-LSTM
Accuracy: 0.763
NLL: 0.704
time-series-classification-on-pemsGP-LSTM
Accuracy: 0.745
NLL: 1.194
time-series-classification-on-pemsGP-KConv1D
Accuracy: 0.794
NLL: 0.537
time-series-classification-on-pendigitsGP-Sig-LSTM
Accuracy: 0.928
NLL: 0.289
time-series-classification-on-pendigitsGP-Sig-GRU
Accuracy: 0.902
NLL: 0.399
time-series-classification-on-pendigitsGP-KConv1D
Accuracy: 0.946
NLL: 0.181
time-series-classification-on-pendigitsGP-GRU
Accuracy: 0.951
NLL: 0.187
time-series-classification-on-pendigitsGP-Sig
Accuracy: 0.955
NLL: 0.146
time-series-classification-on-pendigitsGP-LSTM
Accuracy: 0.953
NLL: 0.185
time-series-classification-on-shapesGP-KConv1D
Accuracy: 1.000
NLL: 0.012
time-series-classification-on-shapesGP-Sig
Accuracy: 1.000
NLL: 0.011
time-series-classification-on-shapesGP-GRU
Accuracy: 0.867
NLL: 0.168
time-series-classification-on-shapesGP-Sig-GRU
Accuracy: 1.000
NLL: 0.012
time-series-classification-on-shapesGP-LSTM
Accuracy: 1.000
NLL: 0.016
time-series-classification-on-shapesGP-Sig-LSTM
Accuracy: 1.000
NLL: 0.014
time-series-classification-on-uwaveGP-GRU
Accuracy: 0.763
NLL: 1.168
time-series-classification-on-uwaveGP-LSTM
Accuracy: 0.870
NLL: 0.745
time-series-classification-on-uwaveGP-KConv1D
Accuracy: 0.947
NLL: 0.189
time-series-classification-on-uwaveGP-Sig
Accuracy: 0.964
NLL: 0.140
time-series-classification-on-uwaveGP-Sig-GRU
Accuracy: 0.968
NLL: 0.121
time-series-classification-on-uwaveGP-Sig-LSTM
Accuracy: 0.970
NLL: 0.113
time-series-classification-on-waferGP-LSTM
Accuracy: 0.966
NLL: 0.105
time-series-classification-on-waferGP-GRU
Accuracy: 0.994
NLL: 0.029
time-series-classification-on-waferGP-Sig-GRU
Accuracy: 0.978
NLL: 0.081
time-series-classification-on-waferGP-Sig
Accuracy: 0.965
NLL: 0.105
time-series-classification-on-waferGP-KConv1D
Accuracy: 0.984
NLL: 0.085
time-series-classification-on-waferGP-Sig-LSTM
Accuracy: 0.988
NLL: 0.048
time-series-classification-on-walkvsrunGP-Sig-GRU
Accuracy: 1.000
NLL: 0.030
time-series-classification-on-walkvsrunGP-GRU
Accuracy: 1.000
NLL: 0.028
time-series-classification-on-walkvsrunGP-LSTM
Accuracy: 1.000
NLL: 0.048
time-series-classification-on-walkvsrunGP-KConv1D
Accuracy: 1.000
NLL: 0.066
time-series-classification-on-walkvsrunGP-Sig-LSTM
Accuracy: 1.000
NLL: 0.030
time-series-classification-on-walkvsrunGP-Sig
Accuracy: 1.000
NLL: 0.023

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances | Papers | HyperAI