HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Variational Denoising Network: Toward Blind Noise Modeling and Removal

Zongsheng Yue; Hongwei Yong; Qian Zhao; Lei Zhang; Deyu Meng

Variational Denoising Network: Toward Blind Noise Modeling and Removal

Abstract

Blind image denoising is an important yet very challenging problem in computer vision due to the complicated acquisition process of real images. In this work we propose a new variational inference method, which integrates both noise estimation and image denoising into a unique Bayesian framework, for blind image denoising. Specifically, an approximate posterior, parameterized by deep neural networks, is presented by taking the intrinsic clean image and noise variances as latent variables conditioned on the input noisy image. This posterior provides explicit parametric forms for all its involved hyper-parameters, and thus can be easily implemented for blind image denoising with automatic noise estimation for the test noisy image. On one hand, as other data-driven deep learning methods, our method, namely variational denoising network (VDN), can perform denoising efficiently due to its explicit form of posterior expression. On the other hand, VDN inherits the advantages of traditional model-driven approaches, especially the good generalization capability of generative models. VDN has good interpretability and can be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected in real scenarios. Comprehensive experiments are performed to substantiate the superiority of our method in blind image denoising.

Code Repositories

AbIsuNav/DD2412_project
pytorch
Mentioned in GitHub
zsyOAOA/VDNet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
image-denoising-on-dndVDN
PSNR (sRGB): 39.38
SSIM (sRGB): 0.952
image-denoising-on-siddVDN
PSNR (sRGB): 39.28
SSIM (sRGB): 0.956

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Variational Denoising Network: Toward Blind Noise Modeling and Removal | Papers | HyperAI