HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Multi-Modal Fusion for End-to-End RGB-T Tracking

Lichao Zhang; Martin Danelljan; Abel Gonzalez-Garcia; Joost van de Weijer; Fahad Shahbaz Khan

Multi-Modal Fusion for End-to-End RGB-T Tracking

Abstract

We propose an end-to-end tracking framework for fusing the RGB and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative Model Prediction), which employs a carefully designed target prediction network trained end-to-end using a discriminative loss. We analyze the effectiveness of modality fusion in each of the main components in DiMP, i.e. feature extractor, target estimation network, and classifier. We consider several fusion mechanisms acting at different levels of the framework, including pixel-level, feature-level and response-level. Our tracker is trained in an end-to-end manner, enabling the components to learn how to fuse the information from both modalities. As data to train our model, we generate a large-scale RGB-T dataset by considering an annotated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an image-to-image translation approach. We perform extensive experiments on VOT-RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing on each model component. The results show that the proposed fusion mechanisms improve the performance of the single modality counterparts. We obtain our best results when fusing at the feature-level on both the IoU-Net and the model predictor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion mechanism we achieve the state-of-the-art performance on RGBT210 dataset.

Code Repositories

zhanglichao/end2end_rgbt_tracking
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
rgb-t-tracking-on-lashermfDiMP
Precision: 44.7
Success: 34.3
rgb-t-tracking-on-rgbt210mfDiMP
Precision: 78.6
Success: 55.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Multi-Modal Fusion for End-to-End RGB-T Tracking | Papers | HyperAI