HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search

Colin White Willie Neiswanger Yash Savani

BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search

Abstract

Over the past half-decade, many methods have been considered for neural architecture search (NAS). Bayesian optimization (BO), which has long had success in hyperparameter optimization, has recently emerged as a very promising strategy for NAS when it is coupled with a neural predictor. Recent work has proposed different instantiations of this framework, for example, using Bayesian neural networks or graph convolutional networks as the predictive model within BO. However, the analyses in these papers often focus on the full-fledged NAS algorithm, so it is difficult to tell which individual components of the framework lead to the best performance. In this work, we give a thorough analysis of the "BO + neural predictor" framework by identifying five main components: the architecture encoding, neural predictor, uncertainty calibration method, acquisition function, and acquisition optimization strategy. We test several different methods for each component and also develop a novel path-based encoding scheme for neural architectures, which we show theoretically and empirically scales better than other encodings. Using all of our analyses, we develop a final algorithm called BANANAS, which achieves state-of-the-art performance on NAS search spaces. We adhere to the NAS research checklist (Lindauer and Hutter 2019) to facilitate best practices, and our code is available at https://github.com/naszilla/naszilla.

Code Repositories

ZachZhu7/banana-git
tf
Mentioned in GitHub
naszilla/bananas
Official
tf
Mentioned in GitHub
naszilla/naszilla
Official
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
neural-architecture-search-on-nas-bench-201BANANAS
Accuracy (Test): 46.3
Search time (s): 100800

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search | Papers | HyperAI