HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

View-Invariant Probabilistic Embedding for Human Pose

Jennifer J. Sun; Jiaping Zhao; Liang-Chieh Chen; Florian Schroff; Hartwig Adam; Ting Liu

View-Invariant Probabilistic Embedding for Human Pose

Abstract

Depictions of similar human body configurations can vary with changing viewpoints. Using only 2D information, we would like to enable vision algorithms to recognize similarity in human body poses across multiple views. This ability is useful for analyzing body movements and human behaviors in images and videos. In this paper, we propose an approach for learning a compact view-invariant embedding space from 2D joint keypoints alone, without explicitly predicting 3D poses. Since 2D poses are projected from 3D space, they have an inherent ambiguity, which is difficult to represent through a deterministic mapping. Hence, we use probabilistic embeddings to model this input uncertainty. Experimental results show that our embedding model achieves higher accuracy when retrieving similar poses across different camera views, in comparison with 2D-to-3D pose lifting models. We also demonstrate the effectiveness of applying our embeddings to view-invariant action recognition and video alignment. Our code is available at https://github.com/google-research/google-research/tree/master/poem.

Benchmarks

BenchmarkMethodologyMetrics
pose-retrieval-on-human3-6mPr-VIPE
Hit@1: 76.2
Hit@10: 95.6
pose-retrieval-on-mpi-inf-3dhpPr-VIPE
Hit@1: 26.4
Hit@10: 58.6
skeleton-based-action-recognition-on-upennPr-VIPE
Accuracy: 97.5
video-alignment-on-upenn-actionPr-VIPE
Kendall's Tau: 0.7476

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
View-Invariant Probabilistic Embedding for Human Pose | Papers | HyperAI