HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

FGN: Fusion Glyph Network for Chinese Named Entity Recognition

Zhenyu Xuan Rui Bao Shengyi Jiang

FGN: Fusion Glyph Network for Chinese Named Entity Recognition

Abstract

Chinese NER is a challenging task. As pictographs, Chinese characters contain latent glyph information, which is often overlooked. In this paper, we propose the FGN, Fusion Glyph Network for Chinese NER. Except for adding glyph information, this method may also add extra interactive information with the fusion mechanism. The major innovations of FGN include: (1) a novel CNN structure called CGS-CNN is proposed to capture both glyph information and interactive information between glyphs from neighboring characters. (2) we provide a method with sliding window and Slice-Attention to fuse the BERT representation and glyph representation for a character, which may capture potential interactive knowledge between context and glyph. Experiments are conducted on four NER datasets, showing that FGN with LSTM-CRF as tagger achieves new state-of-the-arts performance for Chinese NER. Further, more experiments are conducted to investigate the influences of various components and settings in FGN.

Code Repositories

AidenHuen/FGN-NER
Official
Mentioned in GitHub

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
FGN: Fusion Glyph Network for Chinese Named Entity Recognition | Papers | HyperAI