HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery via Filtered Jaccard Loss Function and Parametric Augmentation

Sorour Mohajerani Parvaneh Saeedi

Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery via Filtered Jaccard Loss Function and Parametric Augmentation

Abstract

Cloud and cloud shadow segmentation are fundamental processes in optical remote sensing image analysis. Current methods for cloud/shadow identification in geospatial imagery are not as accurate as they should, especially in the presence of snow and haze. This paper presents a deep learning-based framework for the detection of cloud/shadow in Landsat 8 images. Our method benefits from a convolutional neural network, Cloud-Net+ (a modification of our previously proposed Cloud-Net \cite{myigarss}) that is trained with a novel loss function (Filtered Jaccard Loss). The proposed loss function is more sensitive to the absence of foreground objects in an image and penalizes/rewards the predicted mask more accurately than other common loss functions. In addition, a sunlight direction-aware data augmentation technique is developed for the task of cloud shadow detection to extend the generalization ability of the proposed model by expanding existing training sets. The combination of Cloud-Net+, Filtered Jaccard Loss function, and the proposed augmentation algorithm delivers superior results on four public cloud/shadow detection datasets. Our experiments on Pascal VOC dataset exemplifies the applicability and quality of our proposed network and loss function in other computer vision applications.

Code Repositories

dveyarangi/cloud-net-plus
pytorch
Mentioned in GitHub
dfrisinghelli/pysegcnn
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
semantic-segmentation-on-38-cloudCloud-Net+
Jaccard (Mean): 88.90

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery via Filtered Jaccard Loss Function and Parametric Augmentation | Papers | HyperAI