HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Learning Attentive Pairwise Interaction for Fine-Grained Classification

Peiqin Zhuang Yali Wang Yu Qiao

Learning Attentive Pairwise Interaction for Fine-Grained Classification

Abstract

Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input image. On the other hand, humans can effectively identify contrastive clues by comparing image pairs. Inspired by this fact, this paper proposes a simple but effective Attentive Pairwise Interaction Network (API-Net), which can progressively recognize a pair of fine-grained images by interaction. Specifically, API-Net first learns a mutual feature vector to capture semantic differences in the input pair. It then compares this mutual vector with individual vectors to generate gates for each input image. These distinct gate vectors inherit mutual context on semantic differences, which allow API-Net to attentively capture contrastive clues by pairwise interaction between two images. Additionally, we train API-Net in an end-to-end manner with a score ranking regularization, which can further generalize API-Net by taking feature priorities into account. We conduct extensive experiments on five popular benchmarks in fine-grained classification. API-Net outperforms the recent SOTA methods, i.e., CUB-200-2011 (90.0%), Aircraft(93.9%), Stanford Cars (95.3%), Stanford Dogs (90.3%), and NABirds (88.1%).

Code Repositories

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning Attentive Pairwise Interaction for Fine-Grained Classification | Papers | HyperAI