HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Mutual Information Maximization for Effective Lip Reading

Xing Zhao Shuang Yang Shiguang Shan Xilin Chen

Mutual Information Maximization for Effective Lip Reading

Abstract

Lip reading has received an increasing research interest in recent years due to the rapid development of deep learning and its widespread potential applications. One key point to obtain good performance for the lip reading task depends heavily on how effective the representation can be to capture the lip movement information and meanwhile to resist the noises resulted from the change of pose, lighting conditions, speaker's appearance and so on. Towards this target, we propose to introduce the mutual information constraints on both the local feature's level and the global sequence's level to enhance the relations of the features with the speech content. On the one hand, we constraint the features generated at each time step to enable them carry a strong relation with the speech content by imposing the local mutual information maximization constraint (LMIM), leading to improvements over the model's ability to discover fine-grained lip movements and the fine-grained differences among words with similar pronunciation, such as spend'' andspending''. On the other hand, we introduce the mutual information maximization constraint on the global sequence's level (GMIM), to make the model be able to pay more attention to discriminate key frames related with the speech content, and less to various noises appeared in the speaking process. By combining these two advantages together, the proposed method is expected to be both discriminative and robust for effective lip reading. To verify this method, we evaluate on two large-scale benchmark. We perform a detailed analysis and comparison on several aspects, including the comparison of the LMIM and GMIM with the baseline, the visualization of the learned representation and so on. The results not only prove the effectiveness of the proposed method but also report new state-of-the-art performance on both the two benchmarks.

Code Repositories

xing96/MIM-lipreading
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
lipreading-on-lip-reading-in-the-wild3D Conv + ResNet-18 + Bi-GRU
Top-1 Accuracy: 84.41
lipreading-on-lrw-1000GLMIM
Top-1 Accuracy: 38.79%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Mutual Information Maximization for Effective Lip Reading | Papers | HyperAI