Command Palette
Search for a command to run...
Tal Ridnik Hussam Lawen Asaf Noy Emanuel Ben Baruch Gilad Sharir Itamar Friedman

Abstract
Many deep learning models, developed in recent years, reach higher ImageNet accuracy than ResNet50, with fewer or comparable FLOPS count. While FLOPs are often seen as a proxy for network efficiency, when measuring actual GPU training and inference throughput, vanilla ResNet50 is usually significantly faster than its recent competitors, offering better throughput-accuracy trade-off. In this work, we introduce a series of architecture modifications that aim to boost neural networks' accuracy, while retaining their GPU training and inference efficiency. We first demonstrate and discuss the bottlenecks induced by FLOPs-optimizations. We then suggest alternative designs that better utilize GPU structure and assets. Finally, we introduce a new family of GPU-dedicated models, called TResNet, which achieve better accuracy and efficiency than previous ConvNets. Using a TResNet model, with similar GPU throughput to ResNet50, we reach 80.8 top-1 accuracy on ImageNet. Our TResNet models also transfer well and achieve state-of-the-art accuracy on competitive single-label classification datasets such as Stanford cars (96.0%), CIFAR-10 (99.0%), CIFAR-100 (91.5%) and Oxford-Flowers (99.1%). They also perform well on multi-label classification and object detection tasks. Implementation is available at: https://github.com/mrT23/TResNet.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| fine-grained-image-classification-on-oxford | TResNet-L | Accuracy: 99.1% |
| image-classification-on-cifar-10 | TResNet-XL | Percentage correct: 99 |
| image-classification-on-cifar-100 | TResNet-L-V2 | Percentage correct: 92.6 |
| image-classification-on-flowers-102 | TResNet-L | Accuracy: 99.1% |
| image-classification-on-imagenet | TResNet-XL | Hardware Burden: Number of params: 77M Operations per network pass: Top 1 Accuracy: 84.3% |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.