Command Palette
Search for a command to run...
FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions

Abstract
Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-art, efficient neural networks. However, DARTS-based DNAS's search space is small when compared to other search methods', since all candidate network layers must be explicitly instantiated in memory. To address this bottleneck, we propose a memory and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the search space by up to $10^{14}\times$ over conventional DNAS, supporting searches over spatial and channel dimensions that are otherwise prohibitively expensive: input resolution and number of filters. We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands. Furthermore, we employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The searched FBNetV2s yield state-of-the-art performance when compared with all previous architectures. With up to 421$\times$ less search cost, DMaskingNAS finds models with 0.9% higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but 20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3 by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at https://github.com/facebookresearch/mobile-vision.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| neural-architecture-search-on-imagenet | FBNetV2-L1 | Accuracy: 77.2 MACs: 325M Top-1 Error Rate: 22.8 |
| neural-architecture-search-on-imagenet | FBNetV2-F3 | Accuracy: 73.2 MACs: 126M Top-1 Error Rate: 26.8 |
| neural-architecture-search-on-imagenet | FBNetV2-F1 | Accuracy: 68.3 MACs: 56M Top-1 Error Rate: 31.7 |
| neural-architecture-search-on-imagenet | FBNetV2-F4 | Accuracy: 76.0 MACs: 238M Top-1 Error Rate: 24.0 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.