Command Palette
Search for a command to run...
CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement
Ho Kei Cheng Jihoon Chung Yu-Wing Tai Chi-Keung Tang

Abstract
State-of-the-art semantic segmentation methods were almost exclusively trained on images within a fixed resolution range. These segmentations are inaccurate for very high-resolution images since using bicubic upsampling of low-resolution segmentation does not adequately capture high-resolution details along object boundaries. In this paper, we propose a novel approach to address the high-resolution segmentation problem without using any high-resolution training data. The key insight is our CascadePSP network which refines and corrects local boundaries whenever possible. Although our network is trained with low-resolution segmentation data, our method is applicable to any resolution even for very high-resolution images larger than 4K. We present quantitative and qualitative studies on different datasets to show that CascadePSP can reveal pixel-accurate segmentation boundaries using our novel refinement module without any finetuning. Thus, our method can be regarded as class-agnostic. Finally, we demonstrate the application of our model to scene parsing in multi-class segmentation.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| semantic-segmentation-on-big | PSPNet + CascadePSP | IoU: 93.93 mBA: 75.32 |
| semantic-segmentation-on-big | FCN + CascadePSP | IoU: 77.87 mBA: 67.04 |
| semantic-segmentation-on-big | RefineNet + CascadePSP | IoU: 92.79 mBA: 74.77 |
| semantic-segmentation-on-big | DeepLabV3+ + CascadePSP | IoU: 92.23 mBA: 74.59 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.