HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Rescaling Egocentric Vision

Rescaling Egocentric Vision

Abstract

This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version, EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the "test of time" - i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics

Code Repositories

dibschat/tempAgg
pytorch
Mentioned in GitHub
mustafa1728/TA3N-Lightning
pytorch
Mentioned in GitHub
jonmun/EPIC-KITCHENS-100_UDA_TA3N
pytorch
Mentioned in GitHub
epic-kitchens/epic-kitchens-100-narrator
Official
Mentioned in GitHub
epic-kitchens/epic-kitchens-slowfast
pytorch
Mentioned in GitHub

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp