Command Palette
Search for a command to run...
Takashi Isobe Songjiang Li Xu Jia Shanxin Yuan Gregory Slabaugh Chunjing Xu Ya-Li Li Shengjin Wang Qi Tian

Abstract
Video super-resolution, which aims at producing a high-resolution video from its corresponding low-resolution version, has recently drawn increasing attention. In this work, we propose a novel method that can effectively incorporate temporal information in a hierarchical way. The input sequence is divided into several groups, with each one corresponding to a kind of frame rate. These groups provide complementary information to recover missing details in the reference frame, which is further integrated with an attention module and a deep intra-group fusion module. In addition, a fast spatial alignment is proposed to handle videos with large motion. Extensive results demonstrate the capability of the proposed model in handling videos with various motion. It achieves favorable performance against state-of-the-art methods on several benchmark datasets.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| video-super-resolution-on-msu-vsr-benchmark | TGA | 1 - LPIPS: 0.859 ERQAv1.0: 0.669 FPS: 0.706 PSNR: 25.786 QRCRv1.0: 0.549 SSIM: 0.831 Subjective score: 5.529 |
| video-super-resolution-on-vid4-4x-upscaling-1 | TGA | PSNR: 27.63 SSIM: 0.8423 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.