HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation

Junjie Huang Zheng Zhu Guan Huang Dalong Du

AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation

Abstract

Both appearance cue and constraint cue are vital for human pose estimation. However, there is a tendency in most existing works to overfitting the former and overlook the latter. In this paper, we propose Augmentation by Information Dropping (AID) to verify and tackle this dilemma. Alone with AID as a prerequisite for effectively exploiting its potential, we propose customized training schedules, which are designed by analyzing the pattern of loss and performance in training process from the perspective of information supplying. In experiments, as a model-agnostic approach, AID promotes various state-of-the-art methods in both bottom-up and top-down paradigms with different input sizes, frameworks, backbones, training and testing sets. On popular COCO human pose estimation test set, AID consistently boosts the performance of different configurations by around 0.6 AP in top-down paradigm and up to 1.5 AP in bottom-up paradigm. On more challenging CrowdPose dataset, the improvement is more than 1.5 AP. As AID successfully pushes the performance boundary of human pose estimation problem by considerable margin and sets a new state-of-the-art, we hope AID to be a regular configuration for training human pose estimators. The source code will be publicly available for further research.

Code Repositories

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
AID: Pushing the Performance Boundary of Human Pose Estimation with Information Dropping Augmentation | Papers | HyperAI