Command Palette
Search for a command to run...
Tara Safavi; Danai Koutra

Abstract
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at https://bit.ly/2EPbrJs.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| link-prediction-on-codex | RESCAL | Hits@1: 0.343 Hits@10: 0.635 Hits@3: 0.4926 MRR: 0.404 |
| link-prediction-on-codex | ComplEx | Hits@1: 0.293 Hits@10: 0.623 Hits@3: 0.4494 MRR: 0.404 |
| link-prediction-on-codex | ConvE | Hits@1: 0.219 Hits@10: 0.634 Hits@3: 0.4218 MRR: 0.444 |
| link-prediction-on-codex | TuckER | Hits@1: 0.372 Hits@10: 0.646 Hits@3: 0.5038 MRR: 0.444 |
| link-prediction-on-codex | TransE | Hits@1: 0.339 Hits@10: 0.638 Hits@3: 0.4975 MRR: 0.354 |
| link-prediction-on-codex-large | ConvE | Hits@1: 0.240 Hits@10: 0.420 Hits@3: 0.3298 MRR: 0.303 |
| link-prediction-on-codex-large | ComplEx | Hits@1: 0.237 Hits@10: 0.400 Hits@3: 0.3179 MRR: 0.294 |
| link-prediction-on-codex-large | RESCAL | Hits@1: 0.242 Hits@10: 0.419 Hits@3: 0.3313 MRR: 0.304 |
| link-prediction-on-codex-large | TuckER | Hits@1: 0.244 Hits@10: 0.430 Hits@3: 0.3395 MRR: 0.309 |
| link-prediction-on-codex-large | TransE | Hits@1: 0.116 Hits@10: 0.317 Hits@3: 0.2188 MRR: 0.187 |
| link-prediction-on-codex-medium | RESCAL | Hits@1: 0.239 Hits@10: 0.464 Hits@3: 0.3551 MRR: 0.317 |
| link-prediction-on-codex-medium | TuckER | Hits@1: 0.223 Hits@10: 0.454 Hits@3: 0.3363 MRR: 0.328 |
| link-prediction-on-codex-medium | ConvE | Hits@1: 0.262 Hits@10: 0.476 Hits@3: 0.3701 MRR: 0.318 |
| link-prediction-on-codex-medium | ComplEx | Hits@1: 0.244 Hits@10: 0.456 Hits@3: 0.3477 MRR: 0.337 |
| link-prediction-on-codex-medium | TransE | Hits@1: 0.259 Hits@10: 0.458 Hits@3: 0.3599 MRR: 0.303 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.