Command Palette
Search for a command to run...
Mikhail Galkin Priyansh Trivedi Gaurav Maheshwari Ricardo Usbeck Jens Lehmann

Abstract
Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - StarE capable of modeling such hyper-relational KGs. Unlike existing approaches, StarE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that StarE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| link-prediction-on-jf17k | StarE (H) + Transformer (H) | Hit@1: 0.496 Hit@10: 0.725 Hit@5: 0.658 MRR: 0.574 |
| link-prediction-on-wd50k | StarE (H) + Transformer (H) | Hit@1: 0.271 Hit@10: 0.496 MRR: 0.349 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.