HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Factorizable Graph Convolutional Networks

Yiding Yang Zunlei Feng Mingli Song Xinchao Wang

Factorizable Graph Convolutional Networks

Abstract

Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network graph, users in different latent relationships like friends and colleagues, are usually connected via a bare edge that conceals such intrinsic connections. In this paper, we introduce a novel graph convolutional network (GCN), termed as factorizable graph convolutional network(FactorGCN), that explicitly disentangles such intertwined relations encoded in a graph. FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs, each of which represents a latent and disentangled relation among nodes. The features of the nodes are then aggregated separately in each factorized latent space to produce disentangled features, which further leads to better performances for downstream tasks. We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets, and demonstrate that it yields truly encouraging results in terms of both disentangling and feature aggregation. Code is publicly available at https://github.com/ihollywhy/FactorGCN.PyTorch.

Code Repositories

ihollywhy/FactorGCN.PyTorch
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
graph-classification-on-collabFactorGCN
Accuracy: 81.2%
Accuracy (10-fold): 81.2%
graph-classification-on-imdb-bFactorGCN
Accuracy: 75.3%
Accuracy (10-fold): 75.3%
graph-classification-on-mutagFactorGCN
Accuracy: 89.9%
Accuracy (10-fold): 89.9%
graph-regression-on-zincFactorGCN
MAE: 0.366
node-classification-on-pattern-100kFactorGCN
Accuracy (%): 86.57 ± 0.02

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Factorizable Graph Convolutional Networks | Papers | HyperAI