HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Matching the Clinical Reality: Accurate OCT-Based Diagnosis From Few Labels

Valentyn Melnychuk; Evgeniy Faerman; Ilja Manakov; Thomas Seidl

Matching the Clinical Reality: Accurate OCT-Based Diagnosis From Few Labels

Abstract

Unlabeled data is often abundant in the clinic, making machine learning methods based on semi-supervised learning a good match for this setting. Despite this, they are currently receiving relatively little attention in medical image analysis literature. Instead, most practitioners and researchers focus on supervised or transfer learning approaches. The recently proposed MixMatch and FixMatch algorithms have demonstrated promising results in extracting useful representations while requiring very few labels. Motivated by these recent successes, we apply MixMatch and FixMatch in an ophthalmological diagnostic setting and investigate how they fare against standard transfer learning. We find that both algorithms outperform the transfer learning baseline on all fractions of labelled data. Furthermore, our experiments show that exponential moving average (EMA) of model parameters, which is a component of both algorithms, is not needed for our classification problem, as disabling it leaves the outcome unchanged. Our code is available online: https://github.com/Valentyn1997/oct-diagn-semi-supervised

Code Repositories

Valentyn1997/oct-diagn-semi-supervised
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
retinal-oct-disease-classification-on-oct2017WideResNet-50-2 (EMA-decay=0.999)
Acc: 99.69

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Matching the Clinical Reality: Accurate OCT-Based Diagnosis From Few Labels | Papers | HyperAI