HyperAIHyperAI

Command Palette

Search for a command to run...

Duality-Induced Regularizer for Tensor Factorization Based Knowledge Graph Completion

Zhanqiu Zhang Jianyu Cai Jie Wang

Abstract

Tensor factorization based models have shown great power in knowledge graph completion (KGC). However, their performance usually suffers from the overfitting problem seriously. This motivates various regularizers -- such as the squared Frobenius norm and tensor nuclear norm regularizers -- while the limited applicability significantly limits their practical usage. To address this challenge, we propose a novel regularizer -- namely, DUality-induced RegulArizer (DURA) -- which is not only effective in improving the performance of existing models but widely applicable to various methods. The major novelty of DURA is based on the observation that, for an existing tensor factorization based KGC model (primal), there is often another distance based KGC model (dual) closely associated with it. Experiments show that DURA yields consistent and significant improvements on benchmarks.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp