HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Fine-Grained Re-Identification

Priyank Pathak

Fine-Grained Re-Identification

Abstract

Research into the task of re-identification (ReID) is picking up momentum in computer vision for its many use cases and zero-shot learning nature. This paper proposes a computationally efficient fine-grained ReID model, FGReID, which is among the first models to unify image and video ReID while keeping the number of training parameters minimal. FGReID takes advantage of video-based pre-training and spatial feature attention to improve performance on both video and image ReID tasks. FGReID achieves state-of-the-art (SOTA) on MARS, iLIDS-VID, and PRID-2011 video person ReID benchmarks. Eliminating temporal pooling yields an image ReID model that surpasses SOTA on CUHK01 and Market1501 image person ReID benchmarks. The FGReID achieves near SOTA performance on the vehicle ReID dataset VeRi as well, demonstrating its ability to generalize. Additionally we do an ablation study analyzing the key features influencing model performance on ReID tasks. Finally, we discuss the moral dilemmas related to ReID tasks, including the potential for misuse. Code for this work is publicly available at https: //github.com/ppriyank/Fine-grained-ReIdentification.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
person-re-identification-on-ilids-vidFGReID
Rank-1: 91.5
Rank-10: 99.8
Rank-20: 100
Rank-5: 99.2
person-re-identification-on-marsFGReID
Rank-1: 89.6
Rank-20: 98.8
Rank-5: 97.0
mAP: 86.2
person-re-identification-on-prid2011FGReID
Rank-1: 96.1
Rank-10: 99.9
Rank-20: 100
Rank-5: 99.1

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Fine-Grained Re-Identification | Papers | HyperAI