HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Unsupervised Deep Video Denoising

Dev Yashpal Sheth Sreyas Mohan Joshua L. Vincent Ramon Manzorro Peter A. Crozier Mitesh M. Khapra Eero P. Simoncelli Carlos Fernandez-Granda

Unsupervised Deep Video Denoising

Abstract

Deep convolutional neural networks (CNNs) for video denoising are typically trained with supervision, assuming the availability of clean videos. However, in many applications, such as microscopy, noiseless videos are not available. To address this, we propose an Unsupervised Deep Video Denoiser (UDVD), a CNN architecture designed to be trained exclusively with noisy data. The performance of UDVD is comparable to the supervised state-of-the-art, even when trained only on a single short noisy video. We demonstrate the promise of our approach in real-world imaging applications by denoising raw video, fluorescence-microscopy and electron-microscopy data. In contrast to many current approaches to video denoising, UDVD does not require explicit motion compensation. This is advantageous because motion compensation is computationally expensive, and can be unreliable when the input data are noisy. A gradient-based analysis reveals that UDVD automatically adapts to local motion in the input noisy videos. Thus, the network learns to perform implicit motion compensation, even though it is only trained for denoising.

Code Repositories

sreyas-mohan/udvd
Official
pytorch
Mentioned in GitHub

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Unsupervised Deep Video Denoising | Papers | HyperAI